Chlorogenic Acid Ameliorates Experimental Colitis by Promoting Growth of Akkermansia in Mice
نویسندگان
چکیده
Chlorogenic acid (ChA)-one of the most abundant polyphenol compounds in the human diet-exerts anti-inflammatory activities. The aim of this study was to investigate the effect of ChA on gut microbiota in ulcerative colitis (UC). Colitis was induced by 2.5% dextran sulfate sodium (DSS) in C57BL/6 mice, which were on a control diet or diet with ChA (1 mM). The histopathological changes and inflammation were evaluated. Fecal samples were analyzed by 16S rRNA gene sequencing. ChA attenuated several effects of DSS-induced colitis, including weight loss, increased disease activity index, and improved mucosal damage. Moreover, ChA could significantly suppress the secretion of IFNγ, TNFα, and IL-6 and the colonic infiltration of F4/80⁺ macrophages, CD3⁺ T cells, and CD177⁺ neutrophils via inhibition of the active NF-κB signaling pathway. In addition, ChA decreased the proportion of Firmicutes and Bacteroidetes. ChA also enhanced a reduction in fecal microbiota diversity in DSS treated mice. Interestingly, ChA treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in colitis mice. ChA acted as the intestine-modifying gut microbial community structure, resulting in a lower intestinal and systemic inflammation and also improving the course of the DSS-induced colitis, which is associated with a proportional increase in Akkermansia.
منابع مشابه
Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice
Emerging evidence shows that dietary agents and phytochemicals contribute to the prevention and treatment of ulcerative colitis (UC). We first reported the effects of dietary caffeic acid (CaA) on murine experimental colitis and on fecal microbiota. Colitis was induced in C57BL/6 mice by administration of 2.5% dextran sulfate sodium (DSS). Mice were fed a control diet or diet with CaA (1 mM). O...
متن کاملFiltered Kombucha tea ameliorates the leaky gut syndrome in young and old mice model of colitis
Objective(s): Zonula occludens proteins (ZO-1 and ZO-2) are important intracellular tight junction (TJ)-associated proteins that link the cell cytoskeleton to the trans-membrane TJ proteins. Destruction of TJ proteins is called the “leaky gut syndrome” and has been observed in some of the gastrointestinal diseases such as the inflammatory bowel disease (IBD). So, ther...
متن کاملProtective effect of chlorogenic acid in an experimental model of Parkinson’s disease induced by 6-hydroxydopamine in rats
Introdution: Parkinson's disease is the second most common neurodegenerative disease. Considering the antioxidant and neuroprotective properties of chlorogenic acid, the purpose of this study was to evaluate the neuroprotective effect of this substance in an experimental model of Parkinson's disease. Methods: In this experimental study, Wisar male rats (n = 32) were divided into 4 groups: sham...
متن کاملProtective effect of dizocilpine (MK-801) on TNBS-induced experimental colitis in mice
Ulcerative colitis is chronic and recurrent disease of the gastrointestinal tract with uncertain etiology and incomplete treatment options. N-methyl-d-aspartate (NMDA) receptor suppression has shown anti-inflammatory effects in vitro and in vivo. The aim of present study was to evaluate the role of dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist, on TNBS (trinitrobenzene sulfoni...
متن کاملLactobacillus Acidophilus Regulates the Expression of MicroRNAs and Ameliorates the Symptoms of Acid-induced Ulcerative Colitis in Rats
Background and Objective: Ulcerative colitis (UC) is an unknown recurrent intestinal disease and a common cause of gastrointestinal disorders, which may lead to colorectal cancer if not diagnosed and treated in a timely manner. The beneficial effects of several probiotics in diseases like inflammatory bowel disease (IBD) have been investigated, although their mechanisms have not been yet fully ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017